合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
推薦新聞Info
-
> 液體表麵張力成因、現象及在生學醫學領域的應用意義
> 粉末塗料的塗裝成膜時,與表麵張力有何關係?
> 低濃度含溴鹵水中提溴:縮小氣態膜的表麵張力,提高對溴的提取率
> 壓力、溫度、碳原子數及分子結構對CO2-正構烷烴界麵張力的影響——實驗結果與討論
> 壓力、溫度、碳原子數及分子結構對CO2-正構烷烴界麵張力的影響——實驗部分
> 感光性厚膜電阻漿料製備——玻璃粉配方調整,可降低表麵張力
> 納米氧化鋁可提高BOPP薄膜表麵張力,增強薄膜印刷適用性
> 正十六烷與七甲基壬烷的界麵張力
> 粉色视频APP在线观看高清观看應用案例:鉛試金富集稱量法測定含銅物料中金和銀含量
> 基於單分子層技術研究哈維氏弧菌磷脂酶D對不同磷脂底物的吸附動力學——材料與方法
基於遺傳算法優化提高界麵張力的預測速度和精度
來源:北京科技大學 瀏覽 143 次 發布時間:2024-06-06
準確預測鹽水-氣體界麵張力對於優化儲層中氣體的分布和運移至關重要。這有助於減少氣體泄漏風險、提高儲存容量,並保障地下氣體儲存的長期穩定性,同時推動清潔能源發展和減少碳排放。然而,目前預測界麵張力的方法(如實驗法)存在耗時、費力、成本高以及難以表征多組分氣體共同影響的問題。此外,在鹽水-多組分氣體(如H2,CH4,CO2等)界麵張力方麵,缺乏準確的數學表達式。
近年來,機器學習算法顯示出了良好的預測潛力。在眾多機器學習方法中,自動機器學習(AutoML)算法可處理具有多個因素的複雜預測任務,適用於鹽水-多組分氣體界麵張力的預測問題。符號回歸(SR)可通過數據生成相應的數學表達式,從而為機器學習模型提供可解釋性。然而,這兩種方法在訓練和發現過程中非常耗時,需要一種先進的算法來提高效率。遺傳算法(GA)是一種生物啟發式算法,具有高效的全局搜索能力,可用於解決優化問題,從而提高模型開發和應用的效率。
因此,本文提供了一中基於遺傳算法優化的自動機器學習和符號回歸模型(GA-AutoML-SR),以準確預測鹽水-氣體界麵張力,並生成相應的數學表達式。
遺傳算法優化的界麵張力智能預測方法
采集原始數據,並對所述原始數據進行歸一化,得到歸一化數據;
初始化自動機器學習模型的候選模型集合,所述候選模型集合包括多個候選機器學習模型;
定義遺傳算法的參數;
從所述候選模型集合中選擇第一數量的候選機器學習模型,作為個體;
基於所述歸一化數據,對每個所述個體的第一預測結果進行性能評估,得到每個所述個體的選擇概率;
根據所述選擇概率,構建累積序列,並基於所述累積序列,確定被選個體;
設置所述被選個體的數量加1,並判斷所述被選個體的數量是否小於第二數量,若是,跳轉至從所述候選模型集合中選擇第一數量的候選機器學習模型步驟;若否,對所述被選個體進行變異,得到變異後個體;
基於所述變異後個體,進行個體間交叉,生成後代個體;
第一迭代次數加1,並判斷第一迭代次數是否小於第一迭代閾值,若是,跳轉至從所述候選模型集合中選擇第一數量的候選機器學習模型步驟;若否,將當前所述後代個體作為預測模型;
基於所述原始數據,生成多組樣本數據,並對所述樣本數據進行歸一化,得到歸一化樣本;
將所述歸一化樣本輸入所述預測模型,得到第二預測結果;
將所述第二預測結果和所述歸一化樣本作為補充數據集,合並所述補充數據集和所述歸一化數據,得到合並數據;
定義表達式算子;
基於符號回歸,根據所述表達式算子和所述合並數據,生成初始模型表達式;
利用遺傳算法搜索所述初始模型表達式的空間,確定候選表達式;
對所述候選表達式的適應度進行性能評估,搜索得到最優的模型表達式。
可選地,基於所述歸一化數據,對每個所述個體的第一預測結果進行性能評估,得到每個所述個體的選擇概率,具體為:
將所述歸一化數據作為所述個體的輸入,得到所述個體的第一預測結果;
采用適應度函數對所述第一預測結果進行性能評估,得到對應個體的適應度值;
可選地,根據所述選擇概率,構建累積序列,並基於所述累積序列,確定被選個體,具體為:
順序排列所有個體的選擇概率,形成第一集合;
將第一集合中的當前值與累積序列中對應位置的前一個值的和,作為累積序列的當前值;
選擇介於0到1之間的一個值,作為判定值;
將所述累積序列中與所述判定值的距離最近的數值,作為所述被選個體。
可選地,對所述被選個體進行變異,得到變異後個體,具體為:改變所述個體的結構或參數。
可選地,基於所述變異後個體,進行個體間交叉,生成後代個體,具體為:
分別從各個變異後個體中提取特征進行組合,生成新的特征集,作為後代個體的特征表示,得到所述後代個體。
可選地,基於所述變異後個體,進行個體間交叉,生成後代個體,具體為:
將各個變異後個體的參數進行組合,得到新的參數,對所述新的參數進行訓練,得到所述後代個體。
可選地,基於所述變異後個體,進行個體間交叉,生成後代個體,具體為:
將一個變異後個體的分部,結合到另一個不同的變異後個體的決策邊界中,創建具有新結構個體,作為所述後代個體。
可選地,對所述候選表達式的適應度進行性能評估,搜索得到最優的模型表達式,具體為:
基於所述合並數據,對每個所述候選表達式的第三預測結果進行性能評估,確定被選表達式集合;
對所述被選表達式集合中的所有被選表達式進行變異,生成變異表達式;
基於所述變異表達式,進行交叉,生成後代表達式;
最終得到具體模型表達式為:
基於遺傳算法優化的自動機器學習和符號回歸模型融合遺傳算法、自動機器學習和符號回歸方法,進行界麵張力的預測,相較於傳統實驗測量方法,提高了界麵張力的預測速度和精度,同時通過數學表達式提高了數據驅動模型的可解釋性。